APPENDIX C

Carbon Dioxide Considerations

In waters of high alkalinity it may be necessary to take into account the contribution of dissolved CO₂ to the total gas pressure. Dissolved CO₂ is conveniently determined from alkalinity, total filterable residue, pH, and water temperature using a nomograph (Standard Methods, 14th ed. p. 297). The partial pressure exerted by dissolved CO₂ is calculated from solubility of pure CO₂ as a function of temperature (Lange's Handbook of Chemistry, 12th Edition 10-4) or from tables giving solubility from air as a function of temperature.

For example, if the water has a CO₂ alkalinity of 200 mg/ ℓ , the pH is 7.5, and the water temperature is 20°C, the free CO₂ in solution is about 13 mg/ ℓ (a total filterable residue of 265 mg/ ℓ was used assuming it to be entirely composed of Ca (HCO₃)₂. A direct measurement is preferable if available. Since the partial pressure CO₂ in the atmosphere is about 3 x 10⁻⁴ atmospheres (300 ppmv) the solubility of CO₂ in water in equilibrium with air is about 0.5 mg CO₂/ ℓ . Thus the partial pressure exerted by 13 mg CO₂/ ℓ is

$$\frac{13}{0.5} \times 3 \times 10^{-4}$$
 atm = 7.8 x 10⁻³ atms = 5.93 torr.

The pressure contribution of ${\rm CO}_2$ to the total gas pressure, if significant, should be subtracted from the saturometer reading along with that due to ${\rm O}_2$ and water prior to calculation of percent nitrogen saturation.